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Pressure tensor and heat flux vector for inhomogeneous nonequilibrium fluids under the influence
of three-body forces
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We present a derivation of the pressure tensor and heat flux vector for inhomogeneous fluids under the
influence of three-body forces. The derivation is based on the method of planes formalism of Todd, Evans, and
Daivis [Phys. Rev. 52, 1627(1995; 51, 4362(1995]. Our derivation is validated against nonequilibrium
molecular dynamics simulations of a confined fluid acted upon by a two-body Barker-Fisher-Watts force
coupled with the Axilrod-Teller three-body force. Our method of planes calculations agree perfectly with the
equivalent mesoscopic route of integrating the momentum and energy continuity equations directly from the
simulation data. Our calculations reveal that three-body forces have an important consequence for the isotropic
pressure, but have negligible influence on the shear ginesse viscosityand heat flux vectothence thermal
conductivity for a confined simple fluid.
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[. INTRODUCTION that results from an expansion of the differencesdunc-
tions specifying atomic positions. For homogeneous fluids
Practical implementations of the theory and computathis operator is unity and poses no complication: the result is
tional methods of statistical mechanics have never been mote standard Irving-Kirkwood formulas for the pressure ten-
sought after, due mainly to rapid developments in nanoSor and heat flux vector. The operator is not unity for inho-
science and their technological offshoots. These application@0geneous fluids, and while it is possible to obtain exact
range from the transport of natural gas through zeolite§Xpressions of the position-dependent momentum and energy
through to the operation and dynamics of protein motorsfluxes by this rout¢15] it is an involved computation.
While many of these applications are relevant to equilibrium _ /" Refs.[13], [14] it was demonstrated how a formulation

situations, there is a growing interest in applying the prin_of the Irving-Kirkwood procedure in reciprocal space could

ciples of nonequilibrium statistical mechanics to molecularﬁaiziy fr']rlr;p]lgfn;ﬂea t%ﬂciﬁg\m g‘; mzr']ﬁqn;hrg dag]fj Ie;neégy
fluids under flow conditions. Simulations of shear-induced - ) ' . P
(MOP), is valid for systems with planar geometry and flow

flow by homogeneous nonequilibrium molecular dynam|csm one direction. While the original papers were devoted to

(NEMD) methods are now well established and routine, WlthformaIIy deriving nonequilibrium statistical mechanical ex-

particular technological relevance to lubrication and polymerpressiOnS for the pressure tensor and heat flux vector for

processing[1-5]. Over the past decade interest has alsq)ainyise additive potentials, it was later shofili6] how the
grown in the application of inhomogeneous NEMD tech-method may be generalized to compute any other relevant

niques to fluids confined at the nanoscg8e-10. For non-  property exactly, such as the position-dependent density,
equilibrium environments one is interested in not only thetemperature and streaming velocity.

standard thermodynamic and structural information relevant The method of planes formalism demonstrated that the

to equilibrium fluids, but also their transport properties, |rving-Kirkwood gauge is a direct and natural consequence

namely the transport of mass, momentum and energy. of solving for the microscopic momentum and energy fluxes
The first simulation of planar Couette flow by inhomoge- via the hydrodynamic continuity equations formulated in re-
neous NEMD methodsi.e., atomic fluid confined between ciprocal space. No heuristic assumptions were made about

atomistic walls moving at constant and opposite velocitiepressure being the “force across unit area;” rather it is a

with respect to each othgrwas performed by Lienetal.  natural consequence of the formalism. Since these deriva-

[11]. Their simulations showed that in the limit of large wall tions were published there have been a number of studies

spacing, inhomogeneous and homogeneous NEMD methodsat have used the methodology in practical simulations of

were consistent with each other. A problem still remained inequilibrium and nonequilibrium fluids, e.g., Ref4.7], [18],

the formal application of nonequilibrium statistical mechan-as well as more theoretical papers addressing the vagueness

ics to compute the stress tensor and heat flux vector. Fasf the definition of the pressure tensor, e.g., R&8]. The

homogeneous flows the standard Irving-Kirkwood procedurenethod has been used for confined alkaf23, polymers

[12] is well suited, but for strongly inhomogeneous flows [21], the computation of elastic constants in thin filfi2g],

(e.g., fluids confined by structured walls on the nanogdale and has recently been formulated for flows in cylindrical

cannot be used. This was clearly demonstrated by ®dd.  geometry[23].

[13,14 to be a consequence of the differential operadqr In this paper we extend the method of planes formalism
one step further, by formally deriving expressions for the
pressure tensor and heat flux vector for fluids under the in-

*Email address: btodd@swin.edu.au fluence of three-body forces. We test our theoretical expres-
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sions by applying them to simulations of a confined atomic
fluid under the influence of gravity driven flow. The fluid
interacts with itself and the walls by a combination of a
two-body Barker-Fisher-Watts potentif24] and a three-
body Axilrod-Teller potential25]. Our MOP calculations for
the pressure tensor and heat flux vector are validated againsif, O
equivalent calculations involving direct integration of the
momentum and energy continuity equatioftke so-called
IMC and IEC method$13,14)) and are in excellent agree-
ment. Our simulations demonstrate that the inclusion of
three-body forces has a significant influence on the isotropic
pressure, in agreement with previously reported results for
homogeneous NEMD simulations of three-body fluj@s].
However, for simple fluids the transport of momentum and
energy is largely dependent only on the two-body potential.
This agrees with previously reported results that indicated y

the three-body potential only contributes about 3% of the

total shear viscosity27]. X

«— wall atoms

Periodic image
of wall atoms

Il. THEORY FIG. 1. Planar geometry of the flow for a confined fluid under

o . the influence of an external field. Thzeaxis is normal to the page.
In the derivations that follow we designate the two-body

and three-body force contributions to the total interatomic |n k space the spatially average momentum density3%
force asF?) andF®, respectivelyF(? is defined here to be
the contribution to the total three- body force on atodue to 1 Ky
atomj. If (=@ (r;,r;) is the two-body potential and Jalky)= KEi mo i€, )
B\ =3(ri 1.1y is the three-body potential, then
whereA is the area of the-z surface that has its normal in
¢(2) they direction.m andv,; are the mass and laboratory ve-
FO=> F@=_% ( ) (1) Y N.M andv,; € ratory
: = ar; locity of particlei, respectively, andve=x, y, z. Similarly,
the k-space momentum continuity equation is

FO=3 (FP+F) Dol

i

=iky[Pay(ky)+ Hp(Y)uu(y)uyy)t], (5

at

AT _ . -

== E ar. + ar (rij=ri—rj), where F{ } denotes the Fourier transform of the quantity in
I L 1k brackets andi is the streaming velocity of the fluid. Substi-

(2)  tuting Eqg.(4) into Eq. (5), isolating the pressure tensor, and

@) finally inverse transforming gives the kinetiK) and poten-
F@)— _ (9¢)|Jk 3) tial (U) contributions to the pressure tensor as
arj . oD
The geometry of our system is planar and is shown sche- Ply(Y) = KEi A Sy —y) (6)

matically in Fig. 1. A three-dimensional fluid is confined

between planar parallel walls separated by legtin they and

direction. A constant field drives the system away from equi-

librium and is directed in the direction. Thus, all thermo-

dynamic and transport properties are functions of gnly Y)_ 2 Fai sgnyi—y), (7)

A. Pressure tensor wherep,; andpy; are peculiari.e., thermal momenta, and

The method of planes derivation of the pressure tensoF ,; is the « component of the total force on atoiri.e., it
follows closely the original derivation in Ref13]. Briefly, includes both two- and three-body contributinnghe deri-
the method involves defining the microscopic expressions fovation up to this point is identical to the original derivation
the mass and momentum densities, then Fourier transformirend the reader should refer to REE3] for further details. It
and integrating over thg, z directions(as physical proper- illustrates that Eqs(6) and(7) are actually completely gen-
ties are assumed uniform iq z). One also takes the Fourier eral for this type of planar symmetry and is valid fobody
transform of the momentum continuity equation, substitutegorces. In what follows we specifically consider the case of
in the microscopidk-space momentum flux and solves for three-body forces and use symmetry relations to generate a
thek-space pressure tensor. Finally one performs the inversaseful expression for the potential contribution to the three-
Fourier transform to recover thespace pressure tensor. body pressure. The kinetic contribution remains unchanged
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as it implicitly contains the full two-plus three-body force
contributions in the particle momenta.

We now separate out the two- and three-body contribu-
tions to the pressure

1 e
Pl{xjy(y):ﬁg Foisgnyi—y) /
E (F&+FD)sanyi—y) ‘/

= P&””(y) +PEY(y), ®
where PY(y) and P)V(y) are contributions from two-
body and three-body forces, respectively. In R&8] it was \
shown that .

1
P& ()= 55 2 FPsartyi~y)

1 2 Y=Xo

= ﬂ z FOAJ Sgl’(y, y) . . .
ij FIG. 2. Triangular configuration of atoms and the plane located
at y=y,. Contributions to the pressure tensor are included from

+E F(ZJ? sgr(yJ y)} atoms 1, 2, and 3 along the vectaors andr 5.
1
1 - (3) _y)— o
:ﬂi% F&%j’[sgr(yi—w—sgr(yj—y)]] ~5a| 2 Fullsmyimy)=sory;~y)]
— 2:;2 |:512”)[@(yi_y)®(y_yj) +2 F(|k[Sg|’(y| y)—sgnyx—y)l
—0(y;—y)0(y-vy)l, ) +% F&sarty;—y) —sgriyk—y)] (11a

where® is the Heaviside step function.

Making similar use of particle exchange symmetry, the 1 3)
three-body contribution to the pressure tensor can be ex— 3x 2 Faill®i—y)0(y—y) = 0(y;=y)0(y—vyi)]
pressed as

+E FRLOYi—y)O(Y—y)—0(y—Y)O(y—y))]
P (=1 AE F& sgngi-y)

[E (3) E (3) +% F&%L[(a(yj_Y)®(Y_Yk)—®(Yk_Y)®(y—yj)] )
Fo'sanbi—y)+ 2 Fojsanly;—y)
~BA | )

+>, F® sgnfy,— y)}. (100  Equation(11) demonstrates that the potential contribution to
K the three-body pressure at a plane locatey atcurs when
components of the three-body force intersect that plane, in
complete analogy with the two-body force contributions. For
example, consider the situation shown in Fig. 2, in which a
(3)u _ FR) g + FQ) g o triangular configuration of three particles is shown. Only the
(y)= GA[E aif SGMYi—Y) 2 aik SYTYi —Y) force contributions along the vectars, andr .3 intersect the
plane aty=y, and contribute to the three-body pressure at
S E®) g + s this plane.
% an SV ~Y) 2 Jk gy =y) Finally, in a molecular dynamics simulation the full pres-
sure tensor is computed by time averaging over the simula-
+> E® g —+ > EBG) g _ tion phase space trajectory. In the case of the potential con-
% aia ST Y) % aki SOTYic=Y) tributions this time averaging is straightforward. In Réf3]

Substitution of Eq(2) into Eq. (10) yields
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it was shown that the time averaged kinetic component of the We start the derivation at the Fourier transformed energy
pressure tensor can be usefully expressed as density continuity equatiofil4]

d
<P y(y)>_ Ilm At 2 E pal(tl m ng[pyu(t| m)] Epe(k,t)=ik-[Jq(k,t)‘f'f{peU}‘f‘}—{P'U}]. (13
(12

Here it is noted that particlecrosses the plane gtat a set If p; is defined here as the laboratory momentum of atpm
of times ¢ m;i=1,..N;m=1,2,...). then the total energy of atomis

B. Heat flux vector 2

As with the pressure tensor derivation, we follow the e = 12 ¢(2)+
method of planes formalism developed in Ref4] for the ' 2m 2
heat flux vector. That approach uses the microscopic defini-
tions of the local energy density and the Fourier transform of _
the energy continuity equation to obtaitkapace expression Noting that peu(k,t)=3;eu(r;,t)e'*" and pe(k,t)
for the heat flux vector, which is again back transformed into=2;eg; e'kri [14], we first compute the time derivative of the
r-space. energy density

=

> o (14)

§ % Ijk

c?pe(k,t)

z9¢(2) a¢_(2) _ 1 z9¢(3) a¢(3)
- ij e"“i+—z I._l Ijk+ THijk

+ ik-riy — Po.o—1 .
2 mv;- Ve 2 < rJ (9!’] 3 ijk (Qri rJ o'?I’J

2 VeelkrI

ap\ .
e K ¥k 'k'ri=ik‘(2 vieie'k"i
i

) 1 .
ar +2 vi.(Fi(2)+ Fi(3))e|k.ri_ 52 (Vi (2)+VJ (iz))e"“i
Mk - -

1 IHR L IHR OB e |
= ; i=ik- ek (2) gikri_ giker
3Ek ( ar ) e ik Z viee E Vi F )
: 1 Iy c9¢(‘°’k) Il
(3)aik-r; : 1] 1] 1] |k r
+ P = i+ — . i
2i vi-Fe 3”21( (r' ar, iy I i ary (19
Consider now the two terms containing the three-body forces. The first term may be symmetrized as
> Vi_Fi(S)eik.ri:% > Vi.Fi(S)eikwi_’_z Vj.Fl(S)eikmj_i_E V- FPelk T
i i j K
2 vi- (FP+ F{,f>)eik-fi+§ Vi (FP+ Fgg))eik'w; Vie- (F+ F@)ele i (16)
1] i

The second term containing three-body forces in @§) may be similarly expanded:

3 3 3 3 3 3 3 3
</>” IR IR e L 9p  Ibif B Il IS
—E r]' rk ':—E Vi + —tV;- + — +Vk'
31K ri ar; ary 31K arj; ik arji i i
3
a(bl(]k) i
arkJ

1 )
T §iizk (Vi FP v PR = v FP v B —vie R — v FR)elen,
17
Defining S as the sum of Eqg16) and (17) gives

5(3)_ E [Vj (3) |k ri_eik-") J F(B)( ik-ry _ |kr)+v F(S)(elkr,_ ik- rk)+V F(3)( ik-ry _ |krk)] (18)
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We now permute the triplet indicc_es in E(:]._8) such that all qu(y,t):Jéy(y,t)+‘]gy(y,t). (23
velocities are in terms of the indéxto obtain
. . The kinetic contribution is, as with the pressure tensor, iden-
(3)_ (3) 4 37 ik i — gik-Tey 4 = (3) tical in form to the original MOP derivation in Ref14]:
S 3;\/ [F+F®](e e'k k) 3”Ekv, [FS
K 1
Iy 0=z 2 [oy—u)Uisly-y) (24

) 1 . .
_|_|:i(s)](elk~ri gikerj §zk Vi~Fi(3)(elk'ri—e'k'rk)
except that herd; is the internal energy of a particle defined
1 : .
+g 2 viFOek ek 19
1
2 (2),. = (3)
Substituting Eq(19) back into Eq.(15) gives m[vl uty1l™+ 3 E $it 3Ek ik -
dpe(k, t) (E vieek | + = E v F(Z) ori gk The potential contribution to the heat flux vector is
ﬁ |
Iy.=—7 2 [vi—u(y)]-FPLsgrty )

1 . .
_{_5% Vi.Fi(S)(elk<ri_e|k~rk) )
| —sgrty=y)) 1= ga 2 [vi—u(y)]-F
+ = 2 V| (3) |k ri—e'k'rj)_ (20) ij
X[Sgr(y_yi)_Sgr(y_yj)]
Substitution of Eq(20) into the Fourier transformed energy
continuity equatiorji.e., Eq.(13)] yields 2 [vi—u(y)]- |:(3)

kJ k,t :k i i!t i ik‘ri 1
Kyl 0= Z[V Hirlee X[sgr(y—yi)—sgr(y—yk)]—@% vi-FY

+ = vV - F(Z) ik-rj _ |kr-
E ' ) X[sgrly—y;)—sgrly— yk)]—@Zv F@

1 i .
+—E V"F-(B)(e'k'ri—e'k'fj) X
3 9] it X[Sgr(y_yi)_sgr(y—yj)]_g_ajz u(y)- F(3)

+§2k vi- FE(el - e —ik- F{P-u}. X [sgrty—y;)—sgny =Y. (26)

(21) An alternative, more concise form of E(R6), may be de-
rived by substituting the unsymmetrised form of the pressure
Integrating overx and z, dividing by ik, and taking the tensoii.e., Eq.(8)]into Eq.(22). This is demonstrated in the

inverse Fourier transform yields Appendix and the result is quoted here as
1
Adgy(y,)=2 (0yi=Uy)&d(y =) Iayy:0== 58 2 [vi—u(y)]-F? sgriy—y))

1 (2) 1 (3)
32 Ve FiPsorty —y) —sarty -y ~5a 2 [imu(y)]-FP sgriy—y)

1
—giEj vi- F¥Lsgrty —yi) —sgny—y;)] +a; vi- F¥Lsgrty —yi) +sgniy—yj)

1 +sgrnly =yl (27)
~ 52 virFPlsarty —y) —sgrty —yw]

' The last three terms in E¢26) and the last term in Eq.

—A{P-ul,. (22) (27) are not direct analogies of the two-body heat flux, unlike

the case in the pressure tensor three-body expressions, which
To complete the derivation, we substitute the MOP expresare direct analogies. They are a result of particle velocities
sion for the pressure tensor, E419, into Eq.(22) to give  coupling to three-body forces, which does not occur in the
the kinetic and potential contributions to the heat flux vectompressure tensor calculation. However, it will be shown in
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Sec. IV that these additional terms are negligible, if not zero. TABLE I. Parameters for the Barker-Fisher-Watts potential.
As was the case for the kinetic term for the pressure tensor,

the kinetic term for the heat flux vector in E4) can be Argon
written in a more useful way for computer simulation[ad]  &/k(K) 142.095
a(A) 3.3605
1 A 3.7612
Iy=lim= S Usgictml, @9 ™Y
toe T Ot m=t Barker-Pompe Bobetic-Barker
- . . . . elk(K) 147.70 140.235
wherec;=v;—u(y) is the plane peculiar velocity of atom r(A) 3.7560 3.7630
o(A) 3.341 3.3666
I1l. SIMULATIONS Ao 0.2349 0.29214
A. Two- and three-body potentials Ay —4.7735 —4.41458
Our simulations are performed on fluid and solid atomsAZ __150'22910954 :;fg;gg
that interact via the Barker-Fisher-Watts two-body potentiaA3 O'O —136 026
[24] and Axilrod-Teller three-body potentigR5]. The total 4 ' '
intermolecular potentialg) is a contribution from two-body As 0.0 —151.00
interactions ((?)) and three-body dispersion interactions Ce 1.0698 1.11976
(¢(3)); Csg 0.1642 0.171551
Cio 0.0132 0.013748
N =o@(r)+ ¢C)(r). (29 « 125 125
d(r)=¢
0.01 0.01

The two-body interaction of argon is well represented by the
Barker-Fisher-Watt$BFW) potential[24]. The BFW poten-

tial is a linear combination of the Barker-Pom[&#8] (¢gp)  cell is thus periodic inx, y, andz. The total number of

and Bobetic-Barkef29] (¢gg) potentials atoms isN= 324, which includes 270 liquid atoms and 54
) wall atoms (N, =18 atoms per layer In what follows all
$7(r)=0.75pgg(r) +0.25hgp(r), (80 guantities are expressed in reduced units. The density of the

. . fluid is 0.44 and the wall density is 0.84. The cell dimensions
w:féiht:‘:ioﬁgmgﬂgrg Barker-Pompe and Bobetic-Barkel, o 5 o565,L,—27.5143,L,~ 5.0565. The thickness of
' the walls isAy,,=2.5143. We use the same method in Ref.
5 2 o [13] to approximate the accessible width of the fluid channel,

s@A(r)=e| > A(x—1) exga(l—x)]— > _21;]%6 _ which gives an effective pore width bf=24.0871. A cutoff
i=0 =0 6+x potential radius ot ,/2=2.5282 was used for the two-body
force calculation, whereas a valueloff4=1.2641 was used
Here,x=r/r,, wherer,, is the intermolecular separation at for the three-body force. These were optimal values, based

’ m m upon the work performed in R€f31]. In our simulations we

which the potgntlal _has a minimum value and the other Pa,sed a truncated and shifted version of the BFW and AT
rameters are listed in Table I.

! . : . . otentials, so that long-range corrections need not be consid-
The triple-dipole Axilrod-TelleAT) potential[25] is gred. In this way theg potegntial is zero at and beyond the
cutoff value. We justify this as our goal is to verify the MOP
3 , (320  expressions derived in Sec. Il for the pressure tensor and heat
(FijFikT jic) flux vector, rather than to accurately reproduce experimental

. ” - results.
where vppp is the nonadditive coefficient, and the angles The equations of motion used to simulate wall and fluid
anq intermolecular separatlong_refer to a fmangular Conf'guétoms were developed in Réf.3] and quoted here as fol-
ration of atoms. The nonadditive coefficient for argon is

lows, modified for three-body forces. We note that wall at-
ijjrg da}#e[lise?]'t;ﬁqcﬁgavg?rﬁﬁgsgs i‘:ﬁr?gc:ttrﬁéedrg:j?éggﬁ oms interact via the two plus three body forces in addition to
- SI9 y imp P a harmonic spring force that tethers them together. For the
of liquid phase properties.

wall particles,

vppp(1+ 3 cost; cos; cosb,)

dry 1y, 1) =

B. Geometry and equations of motion P
fi=—
The geometry of our simulation cell is shown in Fig. 1. ''m
An atomic fluid is confined between atomistic walls as de-
picted. Our geometry is such that 0 defines the center of pi=—K(ri—qj) +F?+F® - api—j\.,, iel,.
the fluid channel. A fielde.g., gravity representing a con- (33

stant pressure head drives the fluid and is directed irxthe
direction. Each wall is three atomic layers thick, and theK is the spring force constant and was set to 57.15 in all
second wall is just the periodic image of the first. The entiresimulationsg; is the equilibrium “frozen” lattice position of
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atomi. r; is the laboratory position of atomand p; here 12
refers to the laboratory momentum of atamAs the walls
are not under the influence of a gravitational force the 1k

streaming velocity is zero and the peculi@herma) and
laboratory momenta are equivalejpts the unit vector in the
y direction and the layer multiplie?r,_n ensures that the cen-

ter of mass of each wall layer stays fixed, where the index

n=1, 2, 3, refers to the wall layer. This is important other- ") o6
wise the walls separate as the fluid heats up under fiow.

a thermostat multiplier used to keep the temperature of the
walls fixed (in our simulations the wall temperature was
fixed at 0.722 The layer multiplier and thermostat are com-

08

T

04 -

-5 0 5 10
y

. 3. Number density profile for the fluid system.

IV. RESULTS AND DISCUSSION

puted as 02 H
| <
A= s 2 [Ki—a)+FP+FP], (34 0
wielp
where
3 Ny FIG
> > 1=3N,
Lp=1ieL,
and
2 —K(ri—ap) + FO+FO—ja 1 pi}
a= . (395

3Ny.~2
2i e\lf/pi
HereL:{Ll,L2,L3}.
The fluid atoms obey Newton’s equations of motion
Y
m

b=+ F+ i, S

In Figs. 3 and 4 we plot the density and streaming veloc-
ity profiles, respectively. The streaming velocity is seen to be
well represented by a symmetric quadratic functioryjnn
conformity with hydrodynamicg13]. Only near the walls
does the streaming velocity deviate from quadratic behavior.
It is well known that hydrodynamics breaks down at smaller
channel widthg32].

In Fig. 5 we plot MOP calculations d?,,, they compo-
nent of the pressure in the direction normal to the wall sur-
face, for both the BFW fluid and the BFW fluid with the
inclusion of the AT three body forces. For mechanical stabil-
ity Py, must be constant throughout the channel, and this is
indeed seen to be the case. Also shown is the pressure cal-

whereF, is the external driving field aniis the unit vector

in thex direction and we again note thatandp; refer to the 10
laboratory position and momentum of atdmrespectively.
In our simulations the field strength used was=0.2.

The equations of motion were solved with a fifth order 8
Gear predictor-corrector scheme with an integration time
step of7=0.001. Our simulations were first run for a total of
10° time steps to reach a nonequilibrium steady state. Once
steady state was achieved, production runs of a total bf 10u )
time steps were run with averages accumulated in blocks o *
50 000 time steps. The errors presented in our plots represel 4
the standard error in the mean.

In our simulations we do not assume any functional form
for the streaming velocity. Rather, we first run a steady-state
simulation of~10° time steps and compute a time-averaged
velocity profile at planes, using the procedure developed in
Ref. [16]. These plane velocity values are then used as the

[}

streaming velocity,(y) in MOP calculations of the pressure
tensor and heat flux vector in all subsequent production runs
Finally, we note that a total of 200 planes were used in the

MOP calculations, though not all planes data are plotted on FIG. 4. Streaming velocity profilécircle data pointsfor the
the figures presented in this work for clarity of visualization. fluid. Superimposedsolid curvé is a symmetric quadratic fit, in
For further details of the simulation methodology, readers areonformity with hydrodynamic prediction. Error bars are the size of

referred to Refs[13], [14], [16].
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T T T T T 1 T T T T T
34 - o 2+3body (MOP) | O 2+3body (MOP)

O 2 body (MOP) 2+3 body (IMC)

X 243 body (walls) O 2 body (MOP)

© 2 body (walls) 05 | — — 2body (IMC) . N
32 - X 2+3 body (walls) -

(ralsaferliafestor]uefundeafsafulnaqusiunloalochnabrafnsganfanfuntoulusfuafufusfon foafuafsfeaislvduafusfisfragrafnsd

28 (000008000000 0009090200008202892000000008]

0.42 T T T T T T T

FIG. 5. Py, as a function ofy for the BFW and BFW- AT
fluids. The pressure is computed by the method of planes. Also O 2+3 body (MOP)
shown is the pressure at the walls. 0415 2+3 body (IMC) .
O 2body (MOP)

culated on the system walls. This is computed from the total 041 - — — 2 body (IMC) g |
y component of the force per unit area exerted on the wall
atoms by fluid atoms on one side of the wall. We see perfeclP
agreement between wall and fluR, values, as expected. ~ 0
Clearly the addition of the three-body force significantly af-
fects the pressur®,,. Neglecting to include three-body 0.4
forces overestimates the pressure by almost 11%.

Of greater interest to us is the shear stres®(,). In Fig.
6(a) we plotP,, as a function ofy for the BFW and BFW
+ AT fluids. We show the results of our MOP calculations
and compare them with direct integration of the momentum 039 ' ' : ' ' ' :
continuity equation(the IMC method of Ref[13], given as 57 575 58 585 59 595 & 605 61
Pe(y) =Fef3dy’n(y’), wheren(y) is the number density ~ ® y
Error bars are of the order of the size of the plotting symbols. FIG. 6. () P, as a function ofy for the BFW and BFW- AT
We find excellent agreement between both methods, demo?; v

N\

405

0.395

. . uids. P, computed by the MOP and IMC methods are shown, as
strating that the MOP calcul_atlons are correct. The value of g asP,, computed at the wallgb) As with (a) but magnified in
P,y calculated at the walls is also included and seen to bge range 5.2y<6.1.
consistent with both the MOP and IMC values. Note that the

stress deviates from the linear hydrodynamics predictiorges [14] given as)

close to the walls, as is tq be gxpected for such an inhomq-s the strain ratey=du,(y)/dy]. Error bars are of the order
geneous system. From Fig(a it is clear that three-body ¢ b\qting symbol sizes. Once again, excellent agreement is
forces have negligible effect on the shear stress. This is segg,nq petween both methods, confirming the validity of the
more clearly in Fig. @), in which the region between 5.7 \op expressions. For a channel this size it is clear that the

<y=6.1 is magnified. This is consistent with the observa-gjagsical cubic heat flux profile is obeyed. The value of the
tions reported in Ref.27] that showed that three-body forces heat flux at the walls was also computed by noting that the

only affected the shear viscosity by approximately 3%. Theg,ssian thermostat acting on the walls removes heat at a
precise degree of influence is likely to depend on temperasyia of

ture and density, and to a lesser degree the number of atoms,
so we do not say anything conclusive at this stage. We also
note that our potentials are shifted and truncated and include Q(t) = a(t)z
no long-range corrections. i=1
In Fig. 7(a) we plot the heat flux vector as a functionyof ]

for the BFW and BFW- AT fluids. Classical hydrodynamics The heat flux at the walls is therefore
predicts a cubic heat flux profile. We again show the results
of our MOP calculations and compare them with direct inte-
gration of the energy continuity equatiftme IEC method of

qy(y) = _f)édy, ny(y’) y(y'), wherey

(37)

i
iy

1
<qu(y:ywall)>: K<Kwa>1 (39
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FIG. 8. Individual terms of the three-body contribution to the
09 ° g:g gggz g‘égf) heat flux vector. Term 1 represents the second and third terms of Eq.
O 2body (MOP) (26) and is the direct analogy of the two-body contribution to the
L — — 2 body (IEC) i
0.8 X 243 body (walls) / heat flux vector. Term 2 represents the last three terms ifZ6).
07 ] body contribution to the heat flux vector. Term{damonds
J Wos | ) represents the additional last three terms in &§). It is
LA clear that these last three terms are negligible, if not zero.
05 | .
04 — V. CONCLUSIONS
03 - - In this paper we have derived method of planes expres-
sions for the pressure tensor and heat flux vector for a fluid
02 under the influence of three-body forces. Our derivations
4 7 have been validated against numerical simulations of gravity
(b) y driven flow by nonequilibrium molecular dynamics methods.

The MOP calculations are in excellent agreement with inde-
pendent calculations based upon direct integration of the hy-
drodynamic momentum and energy continuity equations.
Our results show that the isotropic pressure is sensitive to the
presence of three-body forces, whereas the shear stress and
whereK,, is the kinetic energy of the wall atoms and the heat flux vector seem to be largely independent of them.
angle brackets indicate a time averd@d]. The heat flux at  Further work is required to study the temperature and density
the walls is in excellent agreement with the MOP and IECdependence on the relative magnitudes of the two to three-
values at the wall-fluid interface. body force contributions. While such effects are clearly small
We again observe that the presence of three-body forcegr noble gas fluids such as argon, they will most likely play
has very little influence in the transportation of energy acrosg significant and important role for heavier atomic and mo-
the channel. In Fig. (b) the region between 4s9y<7.0is  |ecular fluids and liquid metals. It is hoped that our MOP
magnified. Three-body forces contribute a very small but noexpressions will be useful for the study of such liquids in the
ticeable effect on the heat flux, slightly increasing its magni-fytyre.
tude. Again, this effect is likely to be temperature and density
dependent and we refrain from specific conclusions at this
stage. What is import for our purposes is the excellent agree-
ment between the MOP and IEC methods, clearly visible in
this figure. J.Z. acknowledges the Australian government for financial
Finally, in Fig. 8 we plot several contributions to the assistance. Computations were performed on the supercom-
three-body component of the heat flux vector. Term 1puting facilities at the Australian Partnership for Advanced
(circles represents the second and third terms in €6). Computing(APAC), through a generous grant of computer
These terms are the direct three-body analogy of the twotime.

FIG. 7. (a) Heat flux vector),(y) as a function ofy for the
BFW and BFWA AT fluids. J4,(y) computed by the MOP and IEC
methods are shown, as well g,(y) computed at the wallgb) As
with (a) but magnified in the range 40y<7.0.
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APPENDIX UG 2 @
J B)=——=2 Vi-Fs —Yi
An alternative form of Eq(26) may be obtained by using ay (V:0)= R sarty =y
the alternativglunsymmetrisedform of the pressure tensor 1
in Eq. (8), i.e., + 6_A§.: vi- F¥ sgriy—y;)
Pay (y,t)=— 2 Fsarty-y). (A 1

+ga > vitFYsany-y)
Substituting Eq(A1l) into Eq. (22) gives

. +ﬁ; vi- F¥ sgniy—yj)
Aqu(y,t)ZZ (vyi—uy)ea(y—y;) — ZiEj Vi'Fi(j2) 3
, +ga 2 UV sgrty -y
X[sgry=y)=sgry—y)l-g 2 vi-F¥ L
. ~5a 2 [vimuy]-FPsgrty - i)
Xsgrly—yi)+ g 2 Vit F(¥ sgry—yi) .

+6—A”Ek vi- F¥Lsgrty —yi) +sgny—yj)

1 3
+=2 v-F®sgny—y)+=> u-F®
5o Vi RSy -yt g2 uF +sgny -y (A3)

Xsgny—vy;). (A2)  To prove that Eq(A3) [i.e., three-body contribution to Eg.
(27)] is identical to the three-body contribution of E&6),
The-three body potential contribution can be isolated as  let us expand Eq(A3):

BOy0=- 55 S [vi—u(y)]~Fi(3)Sgr(y—y|)+—E v, FOLsgrty — y;) + gty — y;) + sgriy—y)]
-5 vi-Fi(3)sgr(y—y|)+—z u-F® sgniy-y;)
+a”2k vi- F&sgrty —yi) +sgniy—y;) +sgny -y

=~ ox 2 v FPsarty -y + g1 ! - Z {F® sgniy—y;) +F¥ sgniy—yj) +F& sgrty —yi)}
+ﬁ”zk vi- F sgnly —yi) +sgniy—y;) +sgny -y

,
E Fsgriy—yi)—sgry—y;) 1+

1
a2 Vi PO sgrty—y)+ gru-{ 2 Filsany—yi) - sgrly—yi]

JE FIsgny—y;)—sgny—yi)]
\ y,
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+i2 vi- (FO+F®)sgny — )+i2 vi- (FO+F®)
eAd ij ik )Sgny—vy; 6A L ij ik

1
XSaMy—Y))+ ga 20 i (FP+ Fid)sarty ~yi)

1 1
=- ﬁ; [vi—u(y)]-FPLsgry—yi) = sgrty =1 = g& 2 [vi—u)]-FiIlsgriy -yi) - sgry

1 1
V1= ga 2 Vi- YISOty —y) = sany =y 1= gz 2 vi- Filsarty —yi) = sgry—y;)]

1
+ a5 uy)-FRIsgry—y)) —sarty -]

(A4)

Equation(A4) is just the three-body contribution to E@6), as required.
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